Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Gen Hu, ${ }^{\text {a }}$ Hui-Min Zhang, ${ }^{\text {b }}$ Bing Tu, ${ }^{\text {b }}$ Ying-Ying Fang ${ }^{a}$ and Zhi-Min Jin ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemistry and Materials Science, Wenzhou University, Wenzhou 325027, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
Correspondence e-mail:
flowerperfume1@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.141$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[2-Hydroxy-1,1-bis(hydroxymethyl)ethyl]-bis(2-hydroxyethyl)ammonium 4-nitrobenzoate monohydrate

The title salt, $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, is composed of a 4nitrobenzoate anion, a [2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]bis(2-hydroxyethyl)ammonium (NBHHP) cation and a water molecule. The three units are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

4-Nitrobenzoic acid can easily lose its acidic H atom and form complexes with other compounds through hydrogen bonding. Complexes of 4-nitrobenzoic acid (forming dimers through hydrogen bonding; Tonogaki et al., 1993), pyridinium 4nitrobenzoate 4-nitrobenzoic acid (Carrow \& Wheeler, 1998), tris(2-benzimidazylmethyl) ammonium 4-nitrobenzoate (Ji et al., 2000), 4-nitrobenzoic acid-3-amino-1,2,4-triazole (Byriel et al., 1992) and 4-nitrobenzoic acid-4-nitropyridine N-oxide (Moreno-Fuquen et al., 2000) have already been reported. In these complexes, the hydrogen bonds play an important role in both building and stabilizing the structure. We have synthesized another such complex, (I), and report its structure here (Fig. 1).

(I)

Complex (I) is composed of a 4-nitrobenzoate anion, a [2-hydroxy-1,1-bis(hydroxymethyl)ethyl]bis(2-hydroxyethyl)ammonium (NBHHP) cation and a water molecule. The three units are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. As expected, the $\mathrm{O} 1 \cdots \mathrm{O} 6$ and $\mathrm{O} 2 \cdots \mathrm{O} 7$ distances are short and similar, since both acceptors are from the carboxylate group, and the O5. . O10 distance is longer (Table 2). In addition to the $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, there are some weaker intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between N 1 and three of the hydroxyl groups (Table 2).
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds play an important role in building the structure, while a number of C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2) play a subordinate role in stabilizing the structure. In the unit cell, neighbouring benzene

Received 16 January 2006
Accepted 28 February 2006
rings of the 4-nitrobenzoate are parallel to one another. The relevant centroid-centroid separation between two adjacent benzene rings related by the symmetry operation $(-x,-y+1$, $-z+1)$ is 3.687 (4) \AA.

Experimental

The title compound was synthesized from a mixture of 4-nitrobenzoic acid ($1 \mathrm{mmol}, 0.17 \mathrm{~g}$) and BHHP ($1 \mathrm{mmol}, 0.21 \mathrm{~g}$). The mixture was dissolved in a mixed solvent of anhydrous ethanol (10 ml) and water $(10 \mathrm{ml})$, then heated to 273 K and stirred for half an hour. The reaction system was cooled to room temperature and colourless crystals were collected after 5 d .

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=394.38$
Triclinic, $P \overline{1}$
$a=6.5419$ (6) \AA
$b=11.5935$ (10) \AA
$c=13.4632$ (12) \AA
$\alpha=67.290(2)^{\circ}$
$\beta=77.302(2)^{\circ}$
$\gamma=82.612(2)^{\circ}$
$V=917.81(14) \AA^{3}$

Data collection

Bruker APEX area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS, Bruker, 2000)
$T_{\text {min }}=0.953, T_{\text {max }}=0.965$
4825 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.142$
$S=1.04$
3242 reflections
258 parameters
H atoms treated by a mixture of independent and constrained refinement

$Z=2$

$D_{x}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2504 reflections
$\theta=3.0-24.6^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.37 \times 0.29 \times 0.26 \mathrm{~mm}$

3242 independent reflections
2739 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 13$
$l=-15 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0803 P)^{2}\right. \\
& \quad+0.3186 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of (I) with atom labels, showing 40% probability displacement ellipsoids. The dashed lines denote hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 . . ${ }^{\text {O6 }}$	0.82	1.81	2.608 (3)	166
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 7$	0.82	1.78	2.595 (3)	176
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.87	2.684 (2)	175
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.82	1.94	2.742 (2)	164
O5-H5 . O10	0.82	1.98	2.774 (6)	162
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 7^{\text {iii }}$	0.84 (2)	1.98 (2)	2.811 (6)	175
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3$	0.86 (2)	2.23 (2)	2.690 (2)	113
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 4$	0.86 (2)	2.51 (2)	2.917 (2)	110
N1-H1N...O5	0.86 (2)	2.47 (2)	2.895 (4)	112
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 2$	0.97	2.46	2.873 (3)	105
C5-H5A . . O1	0.97	2.38	3.077 (3)	129
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 9^{\text {iv }}$	0.97	2.58	3.428 (6)	146
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.97	2.55	3.276 (3)	131
C11-H11 \cdots O6	0.93	2.49	2.781 (4)	98
C12-H12 . O8	0.93	2.45	2.726 (3)	97
C14-H14...O9	0.93	2.45	2.720 (2)	97
C15-H15 . O 7	0.93	2.55	2.831 (6)	98

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $x+1, y, z$; (iii) $x+1, y-1, z$; (iv)
$-x,-y+1,-z+1 ;(\mathrm{v})-x+2,-y,-z$.

The H atoms attached to N 1 and O 10 were refined with the distance restraints 0.86 and $0.82 \AA$, respectively. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of $0.82(\mathrm{O}-\mathrm{H}), 0.97($ methylene $\mathrm{C}-\mathrm{H})$ and $0.93 \AA$ (aromatic C-H). For all H atoms, $U_{\text {iso }}=1.2-1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve

Figure 2
The packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds.

organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

References

Bruker (2000). SADABS (Version 2.05), SMART (Version 5.618), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Byriel, K. A., Kennard, C. H. L., Lynch, D. E., Smith, G. \& Thompson, J. G. (1992). Aust. J. Chem. 45, 969-973

Carrow, C. J. \& Wheeler, K. A. (1998). Cryst. Eng. 1, 263-175.
Ji, B. M., Du, C. X., Zhu, Y. \& Ding, K. L. (2000). J. Chem. Crystallogr. 30, 783788.

Moreno-Fuquen, R., Ribeiro de Castro, E. V., Moreno, M., De Almeida Santos, R. H. \& Montano, A. M. (2000). Acta Cryst. C56, 206-209.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Versions 97-1. University of Göttingen, Germany
Tonogaki, M., Kawata, T. \& Ohba, S. (1993). Acta Cryst. B49, 10311039.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

